首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   10篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   7篇
  2016年   8篇
  2015年   1篇
  2014年   5篇
  2013年   16篇
  2012年   11篇
  2011年   11篇
  2010年   6篇
  2009年   7篇
  2008年   14篇
  2007年   19篇
  2006年   9篇
  2005年   17篇
  2004年   17篇
  2003年   13篇
  2002年   11篇
  2001年   12篇
  2000年   14篇
  1999年   13篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
排序方式: 共有275条查询结果,搜索用时 15 毫秒
11.
Mammary gland development is induced by the actions of various hormones to form a structure consisting of collecting ducts and milk-secreting alveoli, which comprise two types of epithelial cells known as luminal and basal cells. These cells adhere to each other by cell adhesion apparatuses whose roles in hormone-dependent mammary gland development remain largely unknown. Here we identified a novel cell adhesion apparatus at the boundary between the luminal and basal cells in addition to desmosomes. This apparatus was formed by the trans-interaction between the cell adhesion molecules nectin-4 and nectin-1, which were expressed in the luminal and basal cells, respectively. Nectin-4 of this apparatus further cis-interacted with the prolactin receptor in the luminal cells to enhance the prolactin-induced prolactin receptor signaling for alveolar development with lactogenic differentiation. Thus, a novel nectin-mediated cell adhesion apparatus regulates the prolactin receptor signaling for mammary gland development.  相似文献   
12.
Oxidative stress is involved in the development of aging-related diseases, such as neurodegenerative diseases. Dietary antioxidants that can protect neuronal cells from oxidative damage play an important role in preventing such diseases. Previously, we reported that water-soluble fractions purified from defatted sesame seed flour exhibit good antioxidant activity in vitro. In the present study, we investigated the protective effects of white and gold sesame seed water-soluble fractions (WS-wsf and GS-wsf, respectively) against 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydrogen peroxide (H2O2) induced oxidative stress in human neuroblast SH-SY5Y cells. Pretreatment with WS-wsf and GS-wsf did not protect cells against AAPH-induced cytotoxicity, while simultaneous co-treatment with AAPH significantly improved cell viability and inhibited membrane lipid peroxidation. These results suggest that WS-wsf and GS-wsf protect cells from AAPH-induced extracellular oxidative damage via direct scavenging of peroxyl radicals. When oxidative stress was induced by H2O2, pretreatment WS-wsf and GS-wsf significantly enhanced cell viability. These results suggest that in addition to radical scavenging, WS-wsf and GS-wsf enhance cellular resistance to intracellular oxidative stress by activation of the Nrf-2/ARE pathway as confirmed by the increased Nrf2 protein level in the nucleus and increased heme oxygenase 1 (HO-1) mRNA expression. The roles of ferulic and vanillic acids as bioactive antioxidants in these fractions were also confirmed. In conclusion, our results indicated that WS-wsf and GS-wsf, which showed antioxidant activity in vitro, are also efficient antioxidants in a cell system protecting SH-SY5Y cells against both extracellular and intracellular oxidative stress.  相似文献   
13.
Keratan sulfate glycosaminoglycans are among the most abundant carbohydrate components of the cornea and are suggested to play an important role in maintaining corneal extracellular matrix structure. Keratan sulfate carbohydrate chains consist of repeating N-acetyllactosamine disaccharides with sulfation on the 6-O positions of N-acetylglucosamine and galactose. Despite its importance for corneal function, the biosynthetic pathway of the carbohydrate chain and particularly the elongation steps are poorly understood. Here we analyzed enzymatic activity of two glycosyltransferases, beta1,3-N-acetylglucosaminyltansferase-7 (beta3GnT7) and beta1,4-galactosyltransferase-4 (beta4GalT4), in the production of keratan sulfate carbohydrate in vitro. These glycosyltransferases produced only short, elongated carbohydrates when they were reacted with substrate in the absence of a carbohydrate sulfotransferase; however, they produced extended GlcNAc-sulfated poly-N-acetyllactosamine structures with more than four repeats of the GlcNAc-sulfated N-acetyllactosamine unit in the presence of corneal N-acetylglucosamine 6-O sulfotransferase (CGn6ST). Moreover, we detected production of highly sulfated keratan sulfate by a two-step reaction in vitro with a mixture of beta3GnT7/beta4GalT4/CGn6ST followed by keratan sulfate galactose 6-O sulfotransferase treatment. We also observed that production of highly sulfated keratan sulfate in cultured human corneal epithelial cells was dramatically reduced when expression of beta3GnT7 or beta4GalT4 was suppressed by small interfering RNAs, indicating that these glycosyltransferases are responsible for elongation of the keratan sulfate carbohydrate backbone.  相似文献   
14.
The NET [noradrenaline (norepinephrine) transporter], an Na+/Cl--dependent neurotransmitter transporter, has several isoforms produced by alternative splicing in the C-terminal region, each differing in expression and function. We characterized the two major isoforms of human NET, hNET1, which has seven C-terminal amino acids encoded by exon 15, and hNET2, which has 18 amino acids encoded by exon 16, by site-directed mutagenesis in combination with NE (noradrenaline) uptake assays and cell surface biotinylation. Mutants lacking one third or more of the 24 amino acids encoded by exon 14 exhibited neither cell surface expression nor NE uptake activity, with the exception of the mutant lacking the last eight amino acids of hNET2, whose expression and uptake resembled that of the WT (wild-type). A triple alanine replacement of a candidate motif (ENE) in this region mimicked the influences of the truncation. Deletion of either the last three or another four amino acids of the C-terminus encoded by exon 15 in hNET1 reduced the cell surface expression and NE uptake, whereas deletion of all seven residues reduced the transport activity but did not affect the cell surface expression. Replacement of RRR, an endoplasmic reticulum retention motif, by alanine residues in the C-terminus of hNET2 resulted in a similar expression and function compared with the WT, while partly recovering the effects of the mutation of ENE. These findings suggest that in addition to the function of the C-terminus, the common proximal region encoded by exon 14 regulates the functional expression of splice variants, such as hNET1 and hNET2.  相似文献   
15.
16.

Background

Sustainable forest management (SFM), which has been recently introduced to tropical natural production forests, is beneficial in maintaining timber resources, but information about the co-benefits for biodiversity conservation and carbon sequestration is currently lacking.

Methodology/Principal Findings

We estimated the diversity of medium to large-bodied forest-dwelling vertebrates using a heat-sensor camera trapping system and the amount of above-ground, fine-roots, and soil organic carbon by a combination of ground surveys and aerial-imagery interpretations. This research was undertaken both in SFM applied as well as conventionally logged production forests in Sabah, Malaysian Borneo. Our carbon estimation revealed that the application of SFM resulted in a net gain of 54 Mg C ha-1 on a landscape scale. Overall vertebrate diversity was greater in the SFM applied forest than in the conventionally logged forest. Specifically, several vertebrate species (6 out of recorded 36 species) showed higher frequency in the SFM applied forest than in the conventionally logged forest.

Conclusions/Significance

The application of SFM to degraded natural production forests could result in greater diversity and abundance of vertebrate species as well as increasing carbon storage in the tropical rain forest ecosystems.  相似文献   
17.

Background

Phospholipase D (PLD) catalyzes conversion of phosphatidylcholine into choline and phosphatidic acid, leading to a variety of intracellular signal transduction events. Two classical PLDs, PLD1 and PLD2, contain phosphatidylinositide-binding PX and PH domains and two conserved His-x-Lys-(x)4-Asp (HKD) motifs, which are critical for PLD activity. PLD4 officially belongs to the PLD family, because it possesses two HKD motifs. However, it lacks PX and PH domains and has a putative transmembrane domain instead. Nevertheless, little is known regarding expression, structure, and function of PLD4.

Methodology/Principal Findings

PLD4 was analyzed in terms of expression, structure, and function. Expression was analyzed in developing mouse brains and non-neuronal tissues using microarray, in situ hybridization, immunohistochemistry, and immunocytochemistry. Structure was evaluated using bioinformatics analysis of protein domains, biochemical analyses of transmembrane property, and enzymatic deglycosylation. PLD activity was examined by choline release and transphosphatidylation assays. Results demonstrated low to modest, but characteristic, PLD4 mRNA expression in a subset of cells preferentially localized around white matter regions, including the corpus callosum and cerebellar white matter, during the first postnatal week. These PLD4 mRNA-expressing cells were identified as Iba1-positive microglia. In non-neuronal tissues, PLD4 mRNA expression was widespread, but predominantly distributed in the spleen. Intense PLD4 expression was detected around the marginal zone of the splenic red pulp, and splenic PLD4 protein recovered from subcellular membrane fractions was highly N-glycosylated. PLD4 was heterologously expressed in cell lines and localized in the endoplasmic reticulum and Golgi apparatus. Moreover, heterologously expressed PLD4 proteins did not exhibit PLD enzymatic activity.

Conclusions/Significance

Results showed that PLD4 is a non-PLD, HKD motif-carrying, transmembrane glycoprotein localized in the endoplasmic reticulum and Golgi apparatus. The spatiotemporally restricted expression patterns suggested that PLD4 might play a role in common function(s) among microglia during early postnatal brain development and splenic marginal zone cells.  相似文献   
18.
19.

Background

Multiple cellular functions are compromised in amyotrophic lateral sclerosis (ALS). In familial ALS (FALS) with Cu/Zn superoxide dismutase (SOD1) mutations, the mechanisms by which the mutation in SOD1 leads to such a wide range of abnormalities remains elusive.

Methodology/Principal Findings

To investigate underlying cellular conditions caused by the SOD1 mutation, we explored mutant SOD1-interacting proteins in the spinal cord of symptomatic transgenic mice expressing a mutant SOD1, SOD1Leu126delTT with a FLAG sequence (DF mice). This gene product is structurally unable to form a functional homodimer. Tissues were obtained from both DF mice and disease-free mice expressing wild-type with FLAG SOD1 (WF mice). Both FLAG-tagged SOD1 and cross-linking proteins were enriched and subjected to a shotgun proteomic analysis. We identified 34 proteins (or protein subunits) in DF preparations, while in WF preparations, interactions were detected with only 4 proteins.

Conclusions/Significance

These results indicate that disease-causing mutant SOD1 likely leads to inadequate protein-protein interactions. This could be an early and crucial process in the pathogenesis of FALS.  相似文献   
20.
Human immunodeficiency virus type 1 (HIV-1)-infected macrophages damage mature neurons in the brain, although their effect on neuronal development has not been clarified. In this study, we show that HIV-1-infected macrophages produce factors that impair the development of neuronal precursor cells and that soluble viral protein R (Vpr) is one of the factors that has the ability to suppress axonal growth. Cell biological analysis revealed that extracellularly administered recombinant Vpr (rVpr) clearly accumulated in mitochondria where a Vpr-binding protein adenine nucleotide translocator localizes and also decreased the mitochondrial membrane potential, which led to ATP synthesis. The depletion of ATP synthesis reduced the transportation of mitochondria within neurites. This mitochondrial dysfunction inhibited axonal growth even when the frequency of apoptosis was not significant. We also found that point mutations of arginine (R) residues to alanine (A) residues at positions 73, 77, and 80 rendered rVpr incapable of causing mitochondrial membrane depolarization and axonal growth inhibition. Moreover, the Vpr-induced inhibition was suppressed after treatment with a ubiquinone analogue (ubiquinone-10). Our results suggest that soluble Vpr is a major viral factor that causes a disturbance in neuronal development through the induction of mitochondrial dysfunction. Since ubiquinone-10 protects the neuronal plasticity in vitro, it may be a therapeutic agent that can offer defense against HIV-1-associated neurological disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号